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Abstract-A finite element method of analysis of the vibrational and wave propagational characteristics is
presented for a laminated orthotropic plate under initial stress. The plate may have an arbitrary number of
bonded elastic orthotropic layers, each with distinct thickness, density and mechanical properties, and the
analysis is capable of treating a completely arbitrary three-dimensional state of initial stress. Biot's theory for
incremental elastic deformations of a stressed solid forms the basis for this study. Ahomogeneous, isotropic
plate under two different states of initial stress was analyzed and their numerical results showed excellent
correlation with those from an exact solution. Further examples of a three layer composite plate and a
sandwich plate are offered to add some general insight to the physical behavior of such plates.

NOTATION

Bj:;O quasi-elastic moduli (containing initial stress effect)
e):;o elastic moduli
ejk contracted notation for elastic moduli, see Appendix.
E; extensional moduli

t:.!J prescribed incremental surface tractions
OJ' shear moduli
H total thickness of plate
k element stiffness

k. element geometrical stiffness
K plate stiffness

K. plate geometrical stiffness
m element mass
M plate mass

r, r* arrays of nodal displacement coordinates
R RT= {rTrOT}, see Equation (21)
S,; components of initial stress

t:. T incremental kinetic energy
u; rectangular cartesian displacement components

Uj , U1 nodal displacement coordinates
U array of plate nodal displacement coordinates

t:. V incremental potential energy
x, rectangular cartesian coordinates
a variational symbol

a,; Kronecker delta
e,j components of the small strain tensor
A eigenvalue parameter for elastic stability, see equation (24)

A10 A2 wave lengths in x I and X2 directions, respectively
lIlj Poisson's ratios
p material density

(T'j incremental stress tensor referred to deformed geometry
T,; incremental stress tensor referred to original geometry
w" components of rotation tensor, see equation (2)
w natural frequency
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I. INTRODUCTION

The advantages of multilayered composite materials, which have led to their increased usage,
are intuitively apparent and require no elaboration. To design structures composed of such
materials, and furthermore, to utilize their inherent characteristics optimally, analytical methods
must be available to evaluate their physical behavior.

In this paper the vibrational characteristics of laminated plates under initial stress are
considered. It has long been known that a state of initial stress in a body can have a significant
influence on its subsequent response to static and dynamic loads. Initial stresses in composites
are inevitably present as residual stresses from fabrication processes. Moreover. the possibilities
offered by controlled prestressing to effectively exploit the full potential of such materials are
exciting and should be of great interest.

Many investigations on vibrations of initially stressed isotropic plates of rectangular and
circular planforms based on Kirchhoff theory have been reported and are summarized by
Leissa[l]. The extension to orthotropic plates was presented by Lekhnitskii[2]. A finite element
analysis of rectangular isotropic plates under arbitrary initial stress states was recently given by
Mei and Yang [3]. One of the first comprehensive studies on plates was carried out by Herrmann
and Armenakas [4], who developed a refined theory for initially stressed isotropic plates. Their
theory accounted for both transverse shear deformation and rotatory inertia as well as
components of initial inplane and transverse shearing stresses. More recently, Sun presented
some new analyses of initially stressed isotropic and orthotropic plates and beams [5, 6], which
are based on a continuum theory including microstructure. His analyses are primarily intended
for laminated structures consisting of two alternating layers, one of which is much stiffer and
thicker than the other. The theories and applications in Refs. [1-6] can be grouped as approximate
plate theories rather than as a complete three-dimensional model.

The laminated plate considered herein has an arbitrary number of bonded elastic orthotropic
layers, each with distinct thickness, density and mechanical properties. The elastic axes of an
orthotropic materials coincide with the plate coordinate axes. The analysis is based on Biot's
three-dimensional theory for incremental elastic deformations of a stressed solid [7). It should be
pointed out that besides Biot's theory, there is another generally accepted mathematical
description of this class of problems due to Trefftz [8]. Bazant [9] concluded from a correlation
study of these two theories and variants of them that they were all mutually equivalent. The
solution technique employed herein is the Extended Ritz technique, which has been applied to
vibrations of laminated plates and cylinders [10-12]. The analysis involves discretization of the
plate into a number of subregions termed laminas. A waveform along the propagation direction is
explicitly stated at the outset and the dependence through the thickness is treated by a Ritz
analysis using suitable interpolation functions within each lamina and appropriate interlaminar
continuity conditions. An algebraic eigenvalue problem results from which the modal data can be
extracted. Since each lamina is independent, it is possible for it to have not only distinct
properties but also a distinct and completely general initial stress state consisting of any or all six
components. Thus, it is possible to model completely arbitrary initial stress states, for example
one in which the initial stresses may vary over the depth of the plate. Also, the problem of elastic
stability of multilayered plates is contained as the special case when the frequency goes to zero.
This particular case can also be separately posed as another eigenvalue problem and some
comments on this point will be made in the paper

2. BASIC EQUATIONS FOR AN INITIALLY STRESSED SOLID

Cartesian tensor notation is adopted, and unless otherwise noted, the summation range
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implied by a repeated subscript is from I to 3. Let the plate have a reference state in which initial
stresses 5jk are in equilibrium and the material properties relative to this state are assumed
known. Equations will be given describing the incremental process which is elastic irrespective of
the nature in which the reference state was reached.

In Bioi's theory [7], two rectangular Cartesian frameworks are utilized, one denoted by Xj

which is fixed with axes running along some suitable directions in the solid and the other in which
a local rigid body rotation has occurred. Let Uj be displacement components along the Xj

directions. Then, the usual definitions for the components of the small strain and rotation tensors
are, respectively:

Ejk = ~(Uj,k +Uk,j)

Wjk = ~(Uj.k Uk,;).

0)

(2)

The constitutive relation for the incremental stresses and strains can be cast into two alternate
but equivalent forms:

(3)
or

(4)

In equations (3) and (4), 7'jk and O'jk are incremental stress components in the rotated coordinate
system referred to unit area before and after deformation, respectively. The transformation
between 7'jk and O'jk is given by:

(5)

The CJ; in (3) are the usual elastic coefficients which have symmetry about their indices and can
be regarded as the dual of those in the constitutive law for an unstressed solid, except now they
are referred to the present reference state. The B;; are quasi elastic coefficients, and in general
they are not symmetric about their indices due to initial stresses 5jk• The relation between CJ; and
B); is:

(6)

where Ojk is the Kronecker symbol. For an orthotropic solid, the explicit form of (6) in matrix
notation is:

cl! C22 C33 0 0 0II I! I!

C22 C33 0 0 022 22

C33 0 0 033

[B);] = C23 0 0 +~;\

C13 013
C1212

0 -51! -51! 0 51,,/2 5n/2
-522 0 -522 52,,/2 0 5u/2
-5.B -S33 0 523/2 5 13/2 0 (7)
-52.~ -523/2 -523/2 (522 + 533)/4 512/4 513/4

-513/2 -513 -Sn/2 5d4 (51! + 533)/4 523 /4
-Su/2 -512/2 -512 Sn/4 523/4 (511 + 5d/4
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It can be seen from (7) that even though the material is orthotropic, constitutive relation (4)
appears to be more general than that for orthotropy because of what can be called
"stress-induced" anisotropy.

The stress equations of motion and the associated traction boundary conditions for a stressed
solid are:

(Tjk + Sjk + S,kWjl +4S,kElj - ~SljElkh = pUj

(Tjk + S,kWjl +1S,kElj -1S/jEldnk = /:).fj

(8)

(9)

where nk are the components of the outward unit normal, p is the density and /:).t are the
prescribed incremental surface tractions.

The variational principle leading to equations of motion (8) and boundary conditions (9) can
be stated as:

o(/:).V-/:).T)- JJ/:).hOujds=O (0)

where /:). T and /:). V are the incremental kinetic and strain energies and have the forms:

/:)'T= JJJ~PUIU/ dvol
Vol

(11)

(12)

with

/:). VI = JJf ~ TjkEjk dvol =: ff f ~ C::;'ElmEjk dvol
Vol Vol

(l2a)

/:). V2 =: ff f ~ Sjk(EjlWlk + EkiW/j + WjlWk,) dvol.
Vol

(12b)

The breakdown of /:). V into /:). VI and /:). V2 is for convenience only. Note that /:). Vi has exactly the
same form as that for an unstressed solid and it is associated with the strain energy due to
incremental stresses only. The other part /:). V2 accounts for the strain energy due to the presence
of initial stresses during the incremental deformation process. It will be seen in the next section
on the formulation of the analysis and solution technique that /:). VI leads to the usual stiffness
matrix while /:). V2 gives rise to an initial stress or geometrical stiffness matrix.

(13)
(j =: 1, 2)

3. EXTENDED RITZ ANALYSIS OF A PLATE

Consider a plate composed of an arbitrary number of bonded elastic orthotropic layers. Let
Cartesian coordinates Xj be established with Xl, X2 in the plane of the plate and X3 normal to it.
The orthotropy axes for all layers coincide with the Xj coordinate directions. In an Extended Ritz
analysis, the plate is discretized into a number of laminas, each of which may have distinct
properties, thickness and initial stress state.

The displacement field within a lamina can be taken as:

Uj(Xk, t) = {Uj(X3) + iU1(X3)} ei("'t+~x,+TJXz)

U3(Xk, t) =: {iU3(X3) + U~(X3)} el("'t+~I+T}X2)
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where w is the natural frequency and ~ = 'TTIA
"

1/ = 'TTIA 2 are wave numbers along Xl, X2,

respectively. It can be seen from (13) that the dependence of the waveform is explicit along the
propagation direction, but is as yet undetermined in X3 of the plate. The functions Uj (and ut)
can be approximated by a quadratic interpolation:

(14)

where

(15)

and X3b, X3! are the thickness coordinates of the bounding surfaces of the lamina. The generalized
coordinates ~b' U1m , ~! (and Uj:, Uj~, Ujj) represent the values of the Uj (and Un
displacement at the back, mid and front nodal surfaces. It was found in Refs. [10-12] that a
suitable number of these elements with quadratic interpolation (14) possess excellent modelling
capability of the physical phenomena over a wide range of frequencies and wave lengths. The
imaginary unit i (corresponding to i = ei~/2) provides for a 'TT 12 phase difference between those
displacements with and without it. The necessity of including Ut arises because of initial stress
components S13, S23 and they cause coupling of Uj with ut. In the case when S13, Sn are absent,
then it is possible to consider only one wave form. Uj, or ut. as both will represent identical
waves that are separated by a 'TT 12 phase shift. This will be clearly seen in the derivation of the
stiffness matrix.

It is noted that wave form (13) can be taken to represent a propagating plane wave whose
wave length is the vectorial sum of the wave lengths along X I and X2. i.e. ={( 'TT 1~)2 + ('TT 11/ )2t

2
•

Thus. it is possible to reduce the number of independent spatial variables by one for the analysis.
However, in so doing, the orthotropic properties must undergo a corresponding rotational
transformation to the propagation direction and this leads to a constitutive relation that appears
to have an anisotropic form more general than orthotropy, even though the fact remains that only
nine of the elastic coefficients are independent. To avoid this difficulty, it is more convenient to
treat the displacement field in terms of a pair of superposed orthogonal waves.

The lamina potential and kinetic energies can be obtained by using (12) and (11). However,
because complex displacements (13) are involved, it is necessary to modify the forms of (II) and
(12) by using complex conjugate quantities so that real energies are possible. It is possible to cast
the expressions for d V" d V2 and d T entirely in terms of displacements by substituting (1) and
(2) into (11) and (12). Thus

'V 1II I {ell - e22
- e33 -L1 1=2: lI U I.IUI.I+ 22U2,2 U2.2+ 33 U3.3 U3.3

Vol

+ e~~(U2.2ih,3 +U2.2U3.3) + eii(U3.3U ,., +U3.3UI.I) + eii(U ,., U2.2 + UI.IU2.2)

+ e23( - + - + - + -) e D( - --23 U2.3U2.3 U2,3U3.2 U2.3U3,2 U3.2U3,Z + 13 U3.IU3., +U3.IUI.3 +U3.IUI.3 +UI.3U1,3)

+ e:~(U1,2U1,2 +U1,2Uz. 1+ UI.ZUZ.l + UZ.lUZ.I)} dX 1 dxz dX3 (16)

d V2 = ~II I ~ {S 1I(3Uz.1 UZ,I - U 1,2UI,Z + 3U3.1 U3.1 - U I.3 U1,3 - U I.ZUZ. I - U1,2Uz. 1- U 1.3U3" - UI,3U3.1)

Vol
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Vol

(18)

where the superior bars indicate complex conjugation. Substituting displacement form (13) into
(16), (17) and (18) and observing that the limits of integration over the depth of the lamina is (X3p,

X3f), there results integrals with integrands of the form:

(16a)

(17a)

08a)

Three important features should be noted. First, it is seen that the integrands in (16a, 17a, 18a) are
not functions of Xl and Xz and that the corresponding double integral is the same for all three
expressions. Hence they can be removed from consideration in this problem when the variational
principle (10) is applied. Secondly, it can be seen that AV\, which is associated with the strain
energy of the incremental stresses only, will lead to contributions in the total element stiffness
matrix which are the same as that for an unstressed solid[12, 10]. Lastly, recall that because
constitutive relation (4) was not symmetric due particularly to the initial stresses Sjk, it was not
obvious at the outset that AVz would lead to contributions for the total element stiffness matrix
that are symmetric about its principal diagonal. However, by examining (17), it is clear that AVo,
which is associated with initial stress or geometrical stiffness matrix contributions, will in fact
possess symmetry. Thus, the total element stiffness matrix will be symmetric, and unless the
initial stresses exceed those limits causing instability. it will be positive definite so that real
frequencies can be expected.

Carrying out the integrations indicated in (16a), (17a). (18a) leads to results for AV and AT of
the form

AV = ~RT[k + kg ]R (19)

AT= -~wORTmR (20)

where

RT = {rTr*T} (21)
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(21a)

(21b)

The element stiffness k, geometrical stiffness kg and m matrices in (19) and (20) are of rank
18 x 18 and can be partitioned into following matrices, each of which has a rank of 9 x 9.

= [m l 0]
m 0 mI' (22)

The explicit forms of kl , k2 , k3 and ml are given in the Appendix. It can be seen (19), (21) and (22)
that rand r* are coupled through the submatrix k3 given in the Appendix, it can be seen that this
coupling is due to the presence of 5 13 and 5 23 , the initial transverse shear stresses. If these initial
stress components are absent, then it is possible to consider only one waveform consisting of
only one set of generalized coordinates, either r or r*, as identical stiffness and mass matrices will
be encountered. Recall that these two waveforms are identical and are separated by a 7T /2 phase
difference as seen in (13).

Variation of the sum of all lamina potential and kinetic energies comprising the plate results in
the following algebraic eigenvalue problem.

(23)

where V is an ordered set of generalized coordinates for the plate and contains r only for each
element or both rand r* depending on the nature of the initial stress state. In (23), K, KG and M
are, respectively, the plate stiffness, geometrical stiffness and mass matrices.

Equation (23) is solved by means of a direct-iterative eigensolution technique described in
Refs. [14, 15]. The essence of this method is a reduction of the rank of the algebraic eigensystem
with a suitably chosen set of reduced generalized coordinates. The eigenvalue problem is solved
in this reduced space. This process is iterated until convergence of the results has been reached.
Its convergence is assured because the method is akin to the Stodola-Vianello technique except
that it is applied to a group of eigenvectors simultaneously instead of only one. The method is
extremely efficient computationally. For this paper, the computer code was written using 16
vectors for the reduced space and iteration was performed until the lowest ten converged within a
preset tolerance.

4. A NOTE ON ELASTIC STABILITY ANALYSIS

The elastic stability of a multilayered plate for a given set of wave numbers, g, T/ is said to
occur if the corresponding frequency goes to zero. It is also possible to treat this problem
separately. In (23), let w2 = 0 and introduce a parameter A such that

[K + AKG]V = o. (24)

The parameter A has the meaning as the ratio of the critical initial stress state to the present initial
stress state. Thus, an alternate eigenvalue problem (24) results for the determination of the lowest
critical absolute value of A. The concept of reducing the rank of the eigenvalue problem can also
be applied here [13], and the direct-iterative eigensolution technique [14, 15] can again be used.

IJSS Vol II No 2-F
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5. HOMOGENEOUS. ISOTROPIC PLATE

In this set of calculations, an opportunity was provided to verify the I.:omputer I.:ode and
determine the accuracy of the modeling technique. Numerical results were compared with those
based on analytical methods. In addition, data were generated to illustrate the physical behavior of
homogeneous, isotropic plates under various states of initial stress.

A plate with unit thickness (H = I) and Poisson's ratio I' = O' 3 was adopted and it was modeled
with 20 equal size laminas. This corresponded to 41 nodal planes and the numher of degrees of
freedom ranged from 82 to 246 depending on the nature of the initial stress and the propagation
direction. Stress free surface conditions were prescribed. All quoted frequenl.:ies are normalized
with respect to the third lowest frequency at cutoff for that of an unstressed plate. i.e.

W,e, = (1T Ih )V GIfJ

where G and p are the shear modulu~and unit density, respectively. The values of initial stress are
normalized with respect to G, i.e. 5,; == SijlG.

Frequencies at selected wave numbers for a plate under (I) uniform tension, (2) uniform in-plane
shear, and (3) uniform transverse shear are presented in Tables 1,2,3, respectively. Also shown in
these tables are results obtained by analytical techniques. such as by an established frequenl.:y
equation «Biot[7] pp. 327-328) Table I) or by a regula falsi procedure applied to the equations of
motion and the prescribed boundary conditions (Tables 2. 3). Examination of these results shows
extremely good agreement for the range of thickness modes and for all of the initial stress states
considered.

In Fig. I, frequency spectra forthe lowest four plane wave m~des are plotted with the magnitude
of the uniform tension as a parameter. As noted the initial stress 5II is a normalized value taken with
respect to G, so that some of the values may appear to be unrealistically high. These values were
contrived only for purposes of showing sufficient differences in the frequencies in the range of wave
numbers considered. It can be seen that only the lowest mode is affected over the entire wave number
range by the initial stress. In the other three modes, the effect is not pronouncedly felt until the higher
wave numbers.

In Fig. 2, the lowest two plane wave modes are plotted for a flexural-type initial stress state. The
exact initial stress distribution as illustrated in this figure, actually consisted of a stepwise series of
constant initial stress in each of the laminas. Displacement patterns for these two modes at
H/A, == 1·0 are shown in Fig. 3.

Table I. Normalized natural frequencies-homogeneous isotropic plate under uniform aXial stre"

H/A, =0·10 HlA, = 0·0 HIA,·~ 1·0 HlA - (l·n

S" = 0·005 5" = -0,005 $" = 0.25 S, ~ I) ~5

Mode Computedt Anal:j: Computedi Anal:j: Computedt AnaH Compnted'i' Anal i

0·016634 0·016633 0·013322 0·013321 0·898450 0·898447 {)·626318 {)·621>' 17
0·168902 0·168902 0·168902 0·168902 1-456109 1-456109 1·3117611> 1·3fi7615

3 1·016327 1·016326 1·017562 1·017562 1·899715 1·899732 1·914167 /·914104
4 1·849655 1·849653 1·849909 1·849907 2·010411 ~'OI0406 1''i'i174~ 1·991:3-

5 2-027708 2·027696 2·029918 2·029906 ~·796982 2·796959 2 X55243 2'X~521X

6 2·997824 2·997723 3-001536 3·001435 3·036039 3·035947 1·112X99 3·112H07

7 3·747113 3·747087 3·747133 3·747107 4·033863 4·033437 4·191346 4·19\234

8 3·998996 3·998572 4·003981 4·003556 4·155283 4·15511>6 4·217212 4·211>7h~

t82 degrees of freedom.
:j:Biot's frequency equation (Ref. [71 pp. 327-328).
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Table 2. Normalized natural
frequencies-homogeneous, isotropic

plate under uniform in-plane shear

H/A, =0·30 HlA z =0·30

5\, = 0·25

221

Mode Computedt

I 0·938459
2 1·490188
3 2·220716
4 3·564705
5 30849546
6 5·471525
7 6·988052
8 9·162458
9 12·02694

10 12·25184

Anal:j:

0·938459
1·490188
2·220715
3-564704
3-849543
5-471508
6·988019
9·162155

12·02682
12·25054

tl23 degrees of freedom.
:j:By regula falsi.

Table 3. Normalized natural
frequencies-homogeneous. isotropic

plate under uniform transverse shear

HlA, = 0,30, H/A z = 0·0

Mode Computedt

1 0·303722
2 0·925763
3 1·584650
4 3·275156
5 3·552424

Anal:j:

0·303722
0·925762
1·584649
3·275155
3·552422

t246 degrees of freedom.
+By regula falsi.

Before proceeding to another example, a brief mention of one calculation on the elastic stability
limit of a thin isotropic plate is made. Using the same model through the thickness (20 elements) for a
square plate (H IA 1= HIA 2 = 0'01). the computed critical uni-directional stress Stl for buckling was
SII =-9·39445 X 10-4

• That obtained from classical plate theory (Timoshenko and Gere[16]) was
S,l=ucr IO=-9'39962xlO-4 where ucr =[-kEI12(1-v2)]x(7THIAf with k=4. Thus, both
results are in good agreement of each other.

6. COMPOSITE PLATE

Frequency analyses were conducted on a laminated plate composed of three layers, all of the
same material (a high modulus fiber-reinforced composite) but oriented in different directions. The
properties of this composite are:

KIEy = 25, OLTIEy = 0,5, OTTlEy = 0,2, VLY = 0·25 (26)

where Land T are directions parallel and transverse to the fibers, respectively. For the present
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S,,= 2.0~,
I .0 ----.".' ....

0.25~

0.0
-0.25

MODE I

2

4

6

6

o

w

4

w

2

0.0
0

0 2 4 2 4
HI>., HI>.,

Fig. I. Frequency spectra for lowest four plane wave modes under initial uniform tension S" = S"IG.

4

MODE 2MODE I
So

4 C7TH
,----------

2
...

2 4 0 2
HI>., HI>.,

Fig. 2. Frequency spectra for lowest two plane wave modes under initial flexural stress distribution So = Sol G.

analysis, both ET and p the material density, can be set equal to unity without loss of generality. The
coefficients C j corresponding to (20) with fibers oriented along the x, direction are:

25·17 0·3356
1-0710

0·3356
0·2711
1·0710

0·2 (26a)

0·5
0·5



Elastodynamic behavior of laminated orthotropic plates under initial stresss 223

--S =0
=0

--- So = I
MODE I

\
\
\
\
\
\
\
\

MODE 2

-I 0 1
u1 DISPLACEMENT

-I 0 I
u3 DISPLACEMENT

Fig. 3. Displacement distribution for lowest two plane wave modes under initial flexural stress distribution.

a 1T /2 rotation of (26a) about the X3 axis gives the appropriate values of Cij for fibers along the X2

direction. The laminate construction is 0°_90°_0° cross-ply as shown in Fig. 4and thicknesses of the
outer laminates are 0·3H and 0·2H and the middle laminate is 0'5H, where H is the total plate
thickness. Amodel was adopted consistingof20equal-thickness elements corresponding to 41 nodal
surfaces. The exact number of degres of freedom depends, of course, on the nature of the initial
stress state. For the two cases of initial stress states considered for the square plate (g = 1]), (I)
uniform axial stress in both directions (S II = S22) and (2) uniform transverse shears in bothdirections
(SI3 = S23), 123 and 246 degrees of freedom, respectively, were required. Stress free surface
conditions were prescribed. In these problems, Sij is normalized according to S'j = SijlEr.

In Fig. 4, the lowest modes of a square plate are plotted for an initial stress of uniform axial stress
in both directions. As can be seen, the most significant frequency variations occur in the lowest mode.
The typical increase in frequency due to intial tension and decrease due to initial compression until
instability are again evident. Effects upon the higher modes are not pronounced until the larger wave
numbers, a phenomenon which has been seen in the previous isotropic plate analysis.

In Fig. 5 the lowest four modes of the same plate under the uniform transverse shear stress state
(S JJ = S23) are plotted. In all four modes, this initial stress state causes a decrease in frequency for the
wave number range considered. In the lowest mode, it can be seen that instabilities are possible,
especially at particularly small wave numbers.

7. SANDWICH PLATE

Sandwich construction is a special class of laminated structures which has been extensively
employed. Furthermore, there have been some interest in achieving optimum design by
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controlled prestressing. Frequency analyses of two special cases of prestress on a particular
sandwich were carried out in order to illustrate a type of behavior associated with this type of
construction.

A plate with cross-sectional construction shown on Fig. 6 was considered. The material
properties of the facings are

3·5 1·5 1·5
3·5 1·5

c,] 3·5 and p :::: 1r
2

Symm. 1·0
1-0

1-0

and that for the core are:

0-0133 0·0033 0·0033
0·0133 0·0033

0-0133
Cij == Symm. 0·005 and p =: 1·0.

0·005
0·005

(27)

(28)

Only plane wave motions were considered. Stress free surface conditions were prescribed. All
initial stresses S,j are normalized with respect to shear modulus G of the facings.

On Fig. 6 are plots of frequency spectra of the lowest four modes for the condition that the
faces alone are under a state of uniform extension. On Fig. 7 are plots of frequencies for the
lowest four modes for an initial stress state corresponding to pure bending as simulated by
uniform tension compression on the two faces. The large differences in the frequencies over the
entire range of wave lengths for relatively small changes in the magnitude of the initial stress
states suggest that the objective of controlled prestressing to achieve a particular response is
highly feasible. Also. it appears to be realistic to achieve this objective without resorting to any
unusually complicated or highly imaginative initial stress state.

On Fig. 8 are plots of the displacement and incremental stress distributions through the cross
section for the lowest three modes for uniform tension in the faces of the sandwich plate of
magnitude S II == l·O for only wave numbers H/Al == 0·1 and 2-0. respectively. It can be seen from
these plots that the incremental stress boundary conditions at the free surfaces and the interfaces
are met.

On Fig. 9. a romparison is shown of displacement patterns for the lowest mode of the
sandwich plate under three different types of prestressing. One is for tension on both faces,
another is for compression on both faces and the third depicted a bending condition, and all of
these states are associated with H fA I == 2·0 and SII == 0·05. Most significant to notice is the
relative increase in displacement magnitudes in the initially compressed regions.

8. CONCLUDING REMARKS

A solution method has been presented for the vibrational and stability analyses of prestressed
laminated orthotropic plates. The formulation and solution method are extensions of earlier
investigations of plate and cylinder problems involving no initial stress states. Because of the
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computational efficiency and the latitude to incorporate any initial stress state, it is possible to
exploit this technique to study a wide variety of plate problems. Several calculations were made
on isotropic plates to demonstrate the method's capabilities and lend confidence to its means for
extremely accurate solutions over a range of wave numbers. Two additional problems involving
composite and sandwich plates were given to further demonstrate the formulation and solution
method. It is intended that such a technique will provide the possibility of furthering our insight
into the behavior of initially stressed plates in order that residual stress analysis. stability analysis
and controlled prestressing may be utilized in the design of plates, especially those of the
composite and sandwich types.
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APPENDIX

The non-zero elements of the stiffness and mass matrices appearing in (22) are:

m,-matrix (m'l = mj , symmetric)

m4-4 = m~~ = mf,6 =: 4mll = 4m2! =:;: 4m33 = 4mn = 4m~u~ =4m9',/

= 8m 14 = 8m" = 8m" = 8m.7 = 8m,. = 8m b•

= -16m'7= -16m,. = -16m,.= 16ph/30

k,-matrix (k" = k" symmetric)
k ll = k7 7 = 4(Cli A + CooB) +7C"D

k" = k" = 4(C"B + C"A) + 7C44D

k" = k"" = 4(C"A + C.4B) +7Cn D

k.4 = 16(CII A + CObB + C"D)

k" = 16(CooA +C"B +C..D)

k" = 16(C"A + C44B + C"D)

4k" = 8k" = -16k'R = 8k 2• = -16k17 = k., = 8k... = 8k57 = 4k78 = 16(C12 + C66)C
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-k" = k79 = 3(C" - C,,)£

-k" = k,o =.l(C" - C4)F

k'4 = k4" = 2(C"A +CnoB)-SC"D

k'6 = -4k,o -k'4 = 4k17 = k40 =-k", = 4(C., + C,,)£

k" = k" = 2(C"B + C6"A)- SC.4D

k,o =-4k,. -k" =4k" = kw =-k", = 4(C" + C4.lF

k,o = k,," = 2(C"A +C.4B) - SC11D

kl? = -(C"A + C""B) +C,D

k" =-(C"B + C,oA l + C..D

k" = -(C.B + C"A) + C"D

k, - matrix Iki, k,i symmetric)

k" = k71 = B(35" - 5" l+45"C +D(215" -75" l/4
k" = k" = A(35" - 5,,)+ 45"C +D(2IS" -7S,,)/4

k" = k"" = A(35" - Snl + B(35" S.17)+6S"C

k44 = 4B(35" - 5"l + If>5,,C + 4D(3S" - 5 11 )

k" = 4A(35" 5,,) + 1f>5"C +4D(35" - 5"l

k"" = 4A(35" - 5n ) +4B(35" - 5J.jl + 12S"C

k" =k" =-C(5" + 5,,) -(SA + SB +7D)5,,/4

-4k"=-3k,,, 12k,o=3k,.=-12k" -3k49 =3k",=4k7" 3£(511 +5")+35,,F

-4k" = -3k", = 12k,0 = 3k" = -12k3, -3k'9= 3k"" =4k,,, >,PIS,o + Sul+ -"S,:E
k'4 = k47 = B(35" - 5 11 l/2 + 25"C + 2D(511 - 35"l

k" =k'4 k4 , =k'7 = -Cl5" +5,,1/2 - 5dA +B - 2D)

k" =k" = A(3511 - S,,1/2 + 25"C + 20(5" - 35,,)

k,o = -2kw kM = A(3S" - 5 H )/2 + B(35,,- Sd/2 + 3S"C

k4 , = -405" + S,,)-4S,,(2A + 2B + D1

k" = B15" 35,,)/4- 5"C + D(35" - 5,,)/4

k,,= k,,= C(5" + 5d/4+5,,(2A +2B -D)/4

k,,=A(S:: 35"l/4-5"C+0(353,-5"j/4

k1-matrix
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k'2 = -k7' = >,(S"F - 5,,£)/4

k" = k"o= -5,,(4A +2B +7D)J2 5"C

k,,= k,,,= -5"C -5,,(4B +2A·t 7D>/2

k'4 = k4" = -4k," = 45,,£ + 652.1P

k", = k'4 = k40 = k", = -S,,(2A + B --SDl/2 - S"C/2

-k" =4k" -··k" = -65,,£ -45'.lF

-k" =4k," -k"" = 4(S,,£ + S"F)

k4,,= -4Sd2A + B +2D)-45"C

k,. = -4S"C - 45,,(2B +A +2D)

k", = kF = S,,(2A + B - 2D)/4 +S"C/4

(antisymmetric, i.e. kij = - hi')

(symmetric, i.e. k" = k]i)

(symmetric)

lantisymmetric)

(antisymmetric)

(symmetric)

(antisymmetric)

(antisymmetric)

(symmetric)

(symmetric)

(symmetric)
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k" = k3• = S IJ C/4+ S2,(2B + A ~ 2Dl!4 (symmetric)

where

A = (h/30
B = 1)'h/30
C =~1)h/30

D = 1/3h
E = t/6
F= 1)/6
t=rr/A,
1] = rr/A,
h = X'I - X3h <thickness of lamina).

CII=C::
C,=C7;
CIJ=C:-:
CO2 = Cii
C,,= C;;
CJ3 = C~~

c.... = ci;
C<;~ = c:~

C,,=C:;

(symmetric)


